22. Quinoxalines and Related Compounds. Part IV.* The Fine Structure of the 2- and 3-Hydroxyquinoxalines and 2-Amino- and 2-Mercapto-quinoxaline.

By G. W. H. CHEESEMAN.

Ultraviolet absorption and ionisation properties indicate that 2- and 3-hydroxyquinoxalines exist in solution largely in the amide form. It is probable that in solution 2-aminoquinoxaline exists predominantly in the amino-form and 2-mercaptoquinoxaline in the thioamide form.

LITTLE is known about the ultraviolet absorption and ionisation properties of quinoxalines. In the present investigation the structures of the potentially tautomeric hydroxy-, amino-, and mercapto-quinoxalines have been studied by comparison of their ultraviolet spectra and ionisation constants with those of their fixed methylated tautomers.

The ultraviolet spectrum of the neutral molecule of 2-hydroxyquinoxaline was closely similar to that of its N-methyl derivative (I; $R = Me, R_1 = H$), but dissimilar from that of 2-methoxyquinoxaline (II; R = H) (Table, Fig. 1). This indicated that the hydroxycompound existed largely in the amide form (I; $R = R_1 = H$). The cations of 2-hydroxyquinoxaline and its N-methyl derivative also showed similar ultraviolet absorption; these spectra differed from the spectrum of the cation of 2-methoxyquinoxaline (Table, Fig. 2). [1958]

Analogous relations were observed between the spectra of 2-hydroxy-3-methylquinoxaline and its N- and O-methyl derivatives both as neutral molecules and as cations (Table).

The relative basicities of these hydroxyquinoxalines and their N- and O-methyl derivatives (Table) also suggested that the hydroxy-compounds existed predominantly in the amide form. Thus the hydroxy-compounds were bases of similar strength to their Nmethyl derivatives but appreciably weaker bases than their O-methyl derivatives. The

basic constants of 2-hydroxypyrazine ($pK_a - 0.1$), its N-methyl derivative ($pK_a - 0.04$), and 2-methoxypyrazine ($pK_a 0.75$) follow a similar pattern, and further examples may be cited.¹ The neutral molecules of the hydroxyquinoxalines and their N-methyl derivatives are stabilised by structures such as (Ia). There are however no similar resonance possibilities for base-weakening to stabilise the neutral molecules of the corresponding methoxyquinoxalines.

Oakes, Pascoe, and Rydon² compared the spectrum in ethanol of both 2: 4-dihydroxy-1:3:5- and 2:4-dihydroxy-1:3:8-triaza-naphthalene with those of the OO'- and NN'dimethyl derivatives. They concluded tentatively that these hydroxyazanaphthalenes exist as true hydroxy-compounds, but the ON-dimethyl derivatives were not available for comparison. It was therefore of interest to compare the spectrum of the neutral molecule of 2:3-dihydroxyquinoxaline with those of its NN'-, ON-, and OO'-dimethyl derivatives, (III; $R = R_1 = Me$), (I; R = Me, $R_1 = OMe$), and (II; R = OMe). The spectrum of the dihydroxy-compound most closely resembled that of its NN-dimethyl derivative (Table, Fig. 3), indicating that it must exist predominantly in the diamide form (III;

¹ Albert and Phillips, J., 1956, 1294.

² Oakes, Pascoe, and Rydon, J., 1956, 1045.

~
~
<u> </u>
<u> </u>
×.
0
0
0
<u> </u>
0
-
÷
<u> </u>
τn.

																		0	-	-																
Spectroscopy	$\lambda_{\max}, \mathrm{m}_{\mathcal{H}} (\log_{10} \varepsilon)$	$367(2\cdot40) + 360(2\cdot61) + 353(2\cdot74) + 346(2\cdot81) + 339(2\cdot84);$ $316(3\cdot80) + 310(3\cdot69) + 310(3\cdot51) + 908(2\cdot52) + 903(2\cdot50) + 903(3\cdot51) + 903(3\cdot51) + 900(3\cdot61) + 900(3\cdot60) + 900(3\cdot60) + 900(3\cdot60) + 900(3\cdot60) + 900(3\cdot60) + 900$	$317(3.77) + 309-308(3.74) + 297^{\circ}(3.61);$ $238(4.38) + 234(4.48) + 231^{\circ}(4.38)$	$329(3.68) + 319(3.795) + 311^{\circ}(3.73); 242(4.44) + 238(4.51) + 236-235^{\circ}(4.42)$	2 343(3714); Z87(3710); Z04(3718) + Z00(3719); Z28(432) 8 356(3.86); 988(3.31) + 989(3.30); 937(4.41)	3.5 395 - 385(3.57 - 3.58); 326(3.79); 259(3.85) + 254(3.87); 228(4.25)	$336(3\cdot74) + 328(3\cdot68) + 322(3\cdot79) + 315(3\cdot68) + 309(3\cdot63); 278(3\cdot49); 244(4\cdot33) + 941(4\cdot31) \cdot 955(4\cdot98)$	$336(3\cdot73) + 324(3\cdot79) + 314(3\cdot725); 288(3\cdot55); 242(4\cdot22); 223(4\cdot22)$	$333^{\circ}(3.69) + 326(3.75); 245(4.25) + 241(4.26); 223(4.19)$	$362 - 361(3 \cdot 51) + 361(3 \cdot 71) + 345(3 \cdot 71) + 336(3 \cdot 71) + 331 \cdot (3 \cdot 67) + 323 \cdot (3 \cdot 57);$	290(3.60) + 286(3.55) + 279(3.73) + 270(3.61); 232(4.45) 346(3.73) + 336(3.71), 989(3.73) - 989(3.73) - 989(3.73) - 989(3.73) - 989(3.73) - 989(3.73) - 989(3.73) - 989(3.73) - 989(3.73) - 989(3.73) - 989(3.73) - 989(3.73) - 989(3.73) - 989(3.73) - 989(3.73) - 989(3.73) - 989(3.73) - 989(3.73) - 988(3.73	345(3.715); 287(3.68); 252(3.76) + 245*(3.80); 230(4.34)	$3.0 \ 395 - 386(3\cdot59 - 3\cdot58); \ 326(3\cdot74); \ 258(3\cdot73) + 254(3\cdot76); \ 231(4\cdot24)$	1、 340330(3'033'04_); 203(3'11); 204(3'13) + 200(3'13); 228(4'20) 8 343(3.90); 290(3.32); 238(4'40)	$1.8\ 378-368(3.74);\ 320(3.795);\ 260(3.81)+255(3.80);\ 230(4.23)$	$331(3\cdot 33) + 317(3\cdot 87) + 309(3\cdot 74); 244(4\cdot 30) + 240(4\cdot 29); 223^{\circ}(4\cdot 20)$	$332(0.01) \pm 313(0.00)$, $240(4.24) \pm 242$ —241(4.20); 223(4.11) 1.0 339(3.90): 252(4.305) + 248(4.27): 222(3.995)	$352^{\circ}(3\cdot 59) + 341(3\cdot 83) + 327-326(3\cdot 82);$ $288(3\cdot 66) + 277(3\cdot 81) + 270^{\circ}(3\cdot 75);$ $321(4\cdot 68)$	$340-334(3\cdot82-3\cdot81); 285(3\cdot71); 253(3\cdot80) + 245^{\circ}(3\cdot82); 228(4\cdot30)$	1.8 377369(3·74); 316(3·77); 260(3·77) + 254(3·75); 231(4·22) f 349*(9.62) - 396(4.00) - 319(4.07); 969*(9.62) - 952(9.655); 996(9.00) + 990(4.00)	$325(4 \cdot 11) + 317(3 \cdot 94) + 310(4 \cdot 11) + 304(3 \cdot 90) + 298 - 297(3 \cdot 85) + 292 - 291(3 \cdot 65) + 202(3 \cdot 85) + 292 - 291(3 \cdot 65) + 292 - 292(3 \cdot 65) + 292(3 \cdot 65) + 292 - 292(3 \cdot 65) + $	$286(3.55) + 280(3.43) + 274(3.39); 243(4.26); 223*(4.31)395(3.01) \pm 311(3.00) \pm 301*(2.81) \cdot 944(4.18) \cdot 999*(4.91)$	$3.3 336^{\circ}(3.99) + 329(4.01); 255(4.11) + 250(4.11); 225(4.06)$	$334(3\cdot73)+322(3\cdot97)+310-309(3\cdot92)+290(3\cdot66);\ 277(3\cdot69)+268-267(3\cdot70)+258(3\cdot69)+268-267(3\cdot70)+258(3\cdot69):\ 230-229(4\cdot98)$	$319(3.99) + 312^{\circ}(3.97); 252^{\circ}(3.87) + 248(3.88); 227(4.20)$	5 340°(3.67); 325(3.99) + 313(4.05); 259°(3.73) + 254(3.765); 238(4.01) + 232(4.06)	$339 \circ (3 \cdot 63) + 324 (3 \cdot 99) + 311 (4 \cdot 07) + 300 \circ (3 \cdot 98); 259 (3 \cdot 71); 239 (3 \cdot 98) + 232 - 231$	$(* 341 \circ (3 \cdot 65) + 325 (3 \cdot 98) + 312 (4 \cdot 05); 261 \circ (3 \cdot 66) + 256 (3 \cdot 695); 236 \circ (3 \cdot 94) + 230 (4 \cdot 02)$	$8 338^{\circ}(3.90) + 325(4.11) + 314(4.07); 238(4.11)$	$5 = 303(3 \cdot 30) + 310 - 230'(3 \cdot 33); 240(4 \cdot 33) = 352 - 343(3 \cdot 84) + 326 - 310'(3 \cdot 75); 257(4 \cdot 07) + 252(4 \cdot 05); 231(4 \cdot 25)$	$363(3\cdot79)$; $296-286*(3\cdot24-3\cdot25)$; $248(4\cdot43)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	362(0.041), $304-200(0.10-0.10)$, $204(4.20)368(3.93) + 320-314(3.72); 253*(4.15) + 241(4.29)$	$405-395(4.04) + 329^{\circ}(3.37); 279(4.255)$	00 002(3.92); 2/9(4.24); 21/(4.26) 3.3 480476(3.86) + 400360°(3.36); 289(4.37)	0 356(3:94); 266(4:175); 240(4·16) 1-8 392(3:93): 257(4:20)
	Solv.	C ₆ H ₁₂ ^d	:		Н_0 4-0 8-6 О	H,0 -3	C_6H_{12}	EtOH	H20 4.5	C.H12 C.H12	EtOH (H ₂ O 4·5	$H_0 - 3$	Н"О 12.5	H20 1	C ₆ H ₁₃ H O 5.1	H,0 – 1	C ₆ H ₁₃	H20 4.8	H ₀ C-I	C H13	H.0 5.1	H ₀ -3	C ₆ H ₁₂	H ₂ O 5·1	H2O 5-0	EtOH	$H_{2}O 5.2$	H20 12.	H,0 1.0	H ₂ O 7·2	Н ₁ О 1-0 п О 7.9	HO 1.0	H20 3.8	H2O - 3	H ₂ O 4·9 H ₂ O -1
in H ₂ O)	$\lambda_{\text{analyt.}}$ $(m\mu)^{b}$		1	1		390	I		956	000			391		375	I	350	1		375			340	l		I	I		1		1	1		I	476	391
ation • (i	Concn. (10 ⁻⁵ M)	.]	1	I	250	9	I		ų	ີ່			9	250	20	I	õ	I	;	ں 1	1		5	I		I	1		500	1000	1	1000	1000	200 2	900 5	<u>م</u> ا
Ionis	Spread (土)	1	1	I	0.03	0.01	I		0.07	3			0.04	0.03	0.04	1	0.01	1		60-0	1		0-06	1		1	1		0-03	0.04	l	0-02	0.02	6	0.04	0.06
	pK.	1	1	I	0.19	-1·38 h	1		00.0	87.			-1·15	88.6	0.48	I	1.38	1		0.51	1		-1·15	1		I	ļ		9-74	3·90 m		4.10	3.72 "		- II ·I	0.26
	Quinoxaline	Parent	2-Methyl-	2-Chloro-	z-Hydroxy- anion	cation	2-Methoxy-		ontion .	cation 1:2-Dihydro-1-methyl-2-oxo-			cation	z-myuroxy-a-memyr- anion	cation	2-Methoxy-3-methyl-	cation	1:2-Dihydro-1:3-dimethyl- $2-0x0-^{k}$		cation 9 · 3. Dihydrovy, l	2:3-Dimethoxy-		cation	1 : 2-Dihydro-3-methoxy- 1-methvl-2-oxo-		1:2:3:4-Tetrahydro-1:4- dimethyl-2:3-dioxo-	1:2-Dihydro-3-hydroxy-	1-1116(11) 1-2-0×0-	anion	z-Annuo- cation	2-Methylamino-	cation 9 Dimethirlemino-	cation	2-Mercapto- enica	anton cation	2-Methylthio- cation

 $R = R_1 = H$). The spectrum of the neutral molecule of 1:2-dihydro-3-hydroxy-1methyl-2-oxoquinoxaline (I; R = Me, $R_1 = OH$) was closer to that of (III; $R = R_1 =$ Me), its N-methyl derivative, than to that of (I; R = Me, $R_1 = OMe$), its O-methyl derivative (Table). Thus in common with other compounds with hydroxy-groups α to ring nitrogen atoms, the equilibrium for the tautomerism of the 2- and 3-hydroxyquinoxalines in solution is such that only small amounts of the enol form are present.³

Comparison of the spectra of the neutral molecules of 2-amino-, 2-methylamino-, and 2-dimethylamino-quinoxaline showed the expected bathochromic shifts of absorption bands associated with the substitution of a methyl group for the hydrogen atom of an amino-group (Table, Fig. 4).⁴ The similarity in the spectra and ionisation constants of

FIG. 3. Neutral molecules of 2:3-dihydroxy--), 2: 3-dimethoxy- (. . . .), 1: 2-dihydro-3-methoxy-1-methyl-2-oxo- $(- \cdot - \cdot -)$ and 1:2:3:4-tetrahydro-1:4-dimethyl-2:3dioxo-quinoxaline (---).

FIG. 4. Neutral molecules of 2-amino- (-----), 2-methylamino- (---), and 2-dimethylamino-

the 2-amino- and 2-dimethylamino-compounds suggested that 2-aminoquinoxaline existed predominantly in the amino- rather than the imino-form. This was to be expected, as related α -amino-N-heteroaromatic compounds have also been shown to exist mainly in the amino-form.³ The evidence was incomplete as the corresponding nuclear N-methyl derivative of 2-aminoquinoxaline was not available for comparison. The change in spectrum which occurred when these aminoquinoxalines were dissolved in solutions sufficiently acid to convert them into mono-cations, indicated that it was a ring nitrogen, rather than the extranuclear nitrogen atom, that accepted the proton. However, Schofield and Osborn ⁵ have shown that 5-aminoquinoxaline accepts the first proton on the amino-group.

- ³ Albert, Chem. Soc. Special Publ. No. 3, 1955, p. 124.
- ⁴ Brown and Short, J., 1953, 331.
 ⁵ Osborn and Schofield, J., 1956, 4191.

Footnotes to Table :

[•] Potentiometric determinations of pK were carried out at 25° , and spectroscopic determinations at room temperature, which varied from 15° to 25° . ^b An entry in this column indicates that the ionisation constant was determined spectroscopically. ^c Where the solvent was water the entry is followed by the pH of the solution. ^d Mason (*Chem. Soc. Special Publ.* No. 3, 1955, p. 139) gave λ_{max} , 340 (log $_{10} \approx 2.76$) and 312 (3.70). These values were taken from the smooth curve drawn through the prime taken from the smooth curve drawn through the prime taken from the smooth curve from the solution. λ_{max} . 340 ($\log_{10} \varepsilon 2.76$) and 312 (3.70). These values were taken from the smooth curve drawn through the vibrational fine structure of the $n-\pi$ and first $\pi-\pi$ bands. • Shoulder or inflection. ^f Spectrum in 0·1N-hydrochloric acid (Landquist, J., 1953, 2830) showed similar λ_{max} and ε_{max} , values. • Albert, Brown, and Cheeseman (J., 1952, 1620) obtained 9·08 at 20°. ^h Albert and Phillips (J., 1956, 1294) gave -1.37. ^f For spectrum in 96% ethanol, Clark-Lewis (J., 1957, 422) gave λ_{max} . 346 (log ε 3·72), 282 (3·72), and 230 (4·31). ^f Extinction curve by Lanning and Cohen (J. Biol. Chem., 1951, 189, 109) showed λ_{max} . at ca. 335, 285, and 250 mµ. ^k For spectrum in ethanol, Dawson, Newbold, and Spring (J., 1949, 2579) gave λ_{max} . 336·5 (log₁₀ ε 3·85), 280·5 (3·75), and 229 (4·33). ^f Albert and Phillips (loc. cit.) gave 9·52 for the acidic pK_a at 20°. ^m Albert, Goldacre, and Phillips (J., 1948, 2240) obtained 3·96 at 20°. ⁿ In 10% ethanol. • In 50% ethanol.

The differences in the ultraviolet absorption spectra of the neutral molecules of 2-mercapto- and 2-methylthio-quinoxaline (Table, Fig. 5) suggested that the mercapto-compound existed mainly in the thioamide rather than the thiol form. There were also differences in the light absorption of the cations derived from these compounds (Table, Fig. 6). 2-Mercaptoquinoxaline proved to be a weaker base than its S-methyl derivative (Table). This again suggested a predominantly thioamide structure for 2-mercaptoquinoxaline, but more conclusive evidence must await measurements on the N-methyl derivative.

Quinoxalines, because of the 1:4-arrangement of their ring nitrogen atoms, are only weakly basic.⁶ Methyl substitution has a base-strengthening effect, [e.g., parent compound]

(p K_a 0.56), 2-methylquinoxaline (p K_a 0.95)⁷]. 2-Hydroxy-3-methylquinoxaline has now been found to be a stronger base than 2-hydroxyquinoxaline; the quinoxalines (I; R = $R_1 = Me$) and (II; R = Me) were similarly stronger bases than the corresponding demethyl compounds (I; R = Me, $R_1 = H$) and (II; R = H). Methoxyl substitution had a base-weakening effect, thus 2:3-dimethoxyquinoxaline was a weaker base than 2-methoxyquinoxaline, itself a weaker base than the parent compound. As expected 2-mercaptoquinoxaline was a stronger acid, and 3-methyl-2-hydroxyquinoxaline a weaker acid than 2-hydroxyquinoxaline.

The spectrum of guinoxaline in cyclohexane (Table, Fig. 7) shows bands attributable to $n-\pi$ and $\pi-\pi$ transitions.⁸⁶ In water ⁹ or methanol¹⁰ the less intense $n-\pi$ band is

- ⁴ Albert, Goldacre, and Phillips, J., 1948, 2249.
 ⁷ Albert, Brown, and Wood, J., 1954, 3832.
 ⁸ Mason, (a) Chem. Soc. Special. Publ. No. 3, 1955, p. 139; (b) J., 1955, 2336.
- Albert, Brown, and Cheeseman, J., 1951, 474.
- ¹⁰ Bohlmann, Chem. Ber., 1951, 84, 860.

obscured by the long-wave $\pi-\pi$ band, since change from non-polar to polar solvent causes $n-\pi$ bands to shift to shorter wavelengths, whereas $\pi-\pi$ bands are not greatly affected by change of solvent.

Substitution in the quinoxaline nucleus at position 2 produces bathochromic shifts in the π - π bands. This increases in the order Me < Cl < OMe < SMe < NMe₂ (Table, Fig. 7). These substituents produce similar bathochromic effects on the 260 m μ band of the benzene spectrum and the 300 m μ band of the pteridine spectrum.⁸⁰ By analogy with the spectra of the chloropyrazines ¹¹ and chloropteridines,⁸⁰ a chloro-substituent should exert a hypsochromic effect on the $n-\pi$ band of the quinoxaline spectrum. This effect was not observed in the spectrum of 2-chloroquinoxaline in *cyclohexane* (Table, Fig. 7) because the $n-\pi$ band was obscured by the more intense π - π band. A comparison of the spectra of 2-methoxy-, 2-methoxy-3-methyl-, and 2 : 3-dimethoxy-quinoxaline in water or *cyclohexane* indicated that the long-wave band of the disubstituted quinoxalines was of increased intensity but at slightly shorter wavelengths.

The anomalous features in the spectrum of the neutral molecule of 6-hydroxypteridine, the pteridine analogue of 2-hydroxyquinoxaline, are due to the formation of a hydrate, the molecule of water being added across the 7:8-carbon-nitrogen double bond.¹² No similar anomalies were observed in the spectrum of the neutral molecule of 2-hydroxyquinoxaline. On anionisation a bathochromic shift characteristic of the hydroxyazanaphthalenes was observed (Table).¹² The spectrum of the anion of 2-hydroxyquinoxaline resembled that of the neutral molecule of 2-aminoquinoxaline, as is general for phenoxide ions and the corresponding aromatic amines.¹³

EXPERIMENTAL

Materials.—Quinoxaline and 2-methylquinoxaline were prepared by Jones and McLaughlin's method.¹⁴ The sources of other quinoxalines were given in earlier papers.¹⁵

Physical Measurements.—Ultraviolet measurements were made with a Unicam S.P. 500 instrument. Measurements of pH were made with a Cambridge bench-type pH meter, standardised with buffer solutions of pH 4.00 and 9.19 at 25°, prepared from Cambridge buffer tablets. A Doran Alkacid sealed glass electrode and a Cambridge calomel electrode were used. Glycine, acetate, and phosphate buffers (0.01M) were used; solutions of lower pH were prepared from standard solutions of either hydrochloric or sulphuric ¹⁶ acid. Ionisation constants were determined either potentiometrically or spectroscopically in the usual manner.¹ The limits quoted in the table define the spread in the calculated pK_a values over the range 30—70% neutralisation.

The author's grateful thanks are due to Dr. S. F. Mason for valuable advice and to Miss M. Seidenberg for her help with the potentiometry and spectroscopy.

QUEEN ELIZABETH COLLEGE, CAMPDEN HILL ROAD, London, W.8.

[Received, July 29th, 1957.]

- ¹¹ Halverson and Hirt, J. Chem. Phys., 1951, 19, 711.
- ¹² Brown and Mason, J., 1956, 3443.
- ¹³ Jones, J. Amer. Chem. Soc., 1945, 67, 2127.
- ¹⁴ Jones and McLaughlin, Org. Synth., 1950, 30, 86.
- ¹⁵ Cheeseman, (a) J., 1955, 1804; (b) J., 1957, 3236.
- ¹⁶ Michaelis and Granick, J. Amer. Chem. Soc., 1942, 64, 1861.