22. Quinoxalines and Related Compounds. Part IV.* The Fine Structure of the 2- and 3-Hydroxyquinoxalines and 2-Amino- and 2-Mercapto-quinoxaline.

By G. W. H. Cheeseman.

Ultraviolet absorption and ionisation properties indicate that 2 - and 3 -hydroxyquinoxalines exist in solution largely in the amide form. It is probable that in solution 2 -aminoquinoxaline exists predominantly in the amino-form and 2 -mercaptoquinoxaline in the thioamide form.
Little is known about the ultraviolet absorption and ionisation properties of quinoxalines. In the present investigation the structures of the potentially tautomeric hydroxy-, amino-, and mercapto-quinoxalines have been studied by comparison of their ultraviolet spectra and ionisation constants with those of their fixed methylated tautomers.

The ultraviolet spectrum of the neutral molecule of 2 -hydroxyquinoxaline was closely similar to that of its N-methyl derivative ($\mathrm{I} ; \mathrm{R}=\mathrm{Me}, \mathrm{R}_{1}=\mathrm{H}$), but dissimilar from that of 2-methoxyquinoxaline ($\mathrm{II} ; \mathrm{R}=\mathrm{H}$) (Table, Fig. 1). This indicated that the hydroxycompound existed largely in the amide form ($\mathrm{I} ; \mathrm{R}=\mathrm{R}_{1}=\mathrm{H}$). The cations of 2-hydroxyquinoxaline and its N-methyl derivative also showed similar ultraviolet absorption; these spectra differed from the spectrum of the cation of 2 -methoxyquinoxaline (Table, Fig. 2).

* Part III, J., 1957, 3236.

Analogous relations were observed between the spectra of 2-hydroxy-3-methylquinoxaline and its N - and O-methyl derivatives both as neutral molecules and as cations (Table).

The relative basicities of these hydroxyquinoxalines and their N - and O-methyl derivatives (Table) also suggested that the hydroxy-compounds existed predominantly in the amide form. Thus the hydroxy-compounds were bases of similar strength to their N methyl derivatives but appreciably weaker bases than their O-methyl derivatives. The

Fig. 1. Neutral molecules of 2-hydroxy(——) 2-methoxy-(. . . .), and 1:2-dikydro-1-methyl-2-oxoquinoxaline

Fig. 2. Cations of 2-hydroxy-(—), 2-methoxy-(. . . .), and $1: 2$-dihydro-1-methyl-2-oxo-quinoxaline (----).

basic constants of 2 -hydroxypyrazine ($\mathrm{p} K_{a}-0 \cdot 1$), its N-methyl derivative ($\mathrm{p} K_{a}-0.04$), and 2-methoxypyrazine ($\mathrm{p} K_{a} 0.75$) follow a similar pattern, and further examples may be cited. ${ }^{1}$ The neutral molecules of the hydroxyquinoxalines and their N-methyl derivatives are stabilised by structures such as (Ia). There are however no similar resonance possibilities for base-weakening to stabilise the neutral molecules of the corresponding methoxyquinoxalines.

(I)

(I a)

(II)

(III)

Oakes, Pascoe, and Rydon ${ }^{2}$ compared the spectrum in ethanol of both 2:4-dihydroxy-1:3:5- and 2:4-dihydroxy-1:3:8-triaza-naphthalene with those of the $O O^{\prime}$ - and $N N^{\prime}$ dimethyl derivatives. They concluded tentatively that these hydroxyazanaphthalenes exist as true hydroxy-compounds, but the $O N$-dimethyl derivatives were not available for comparison. It was therefore of interest to compare the spectrum of the neutral molecule of 2:3-dihydroxyquinoxaline with those of its $N N^{\prime}-, O N-$, and $O O^{\prime}$-dimethyl derivatives, (III; $\mathrm{R}=\mathrm{R}_{1}=\mathrm{Me}$), ($\mathrm{I} ; \mathrm{R}=\mathrm{Me}, \mathrm{R}_{1}=\mathrm{OMe}$), and (II; $\mathrm{R}=\mathrm{OMe}$). The spectrum of the dihydroxy-compound most closely resembled that of its $N N$-dimethyl derivative (Table, Fig. 3), indicating that it must exist predominantly in the diamide form (III;

[^0]
$\mathrm{R}=\mathrm{R}_{1}=\mathrm{H}$). The spectrum of the neutral molecule of $1: 2$-dihydro-3-hydroxy-1-methyl-2-oxoquinoxaline ($\mathrm{I} ; \mathrm{R}=\mathrm{Me}, \mathrm{R}_{1}=\mathrm{OH}$) was closer to that of (III; $\mathrm{R}=\mathrm{R}_{1}=$ Me), its N-methyl derivative, than to that of (I; $\mathrm{R}=\mathrm{Me}, \mathrm{R}_{1}=\mathrm{OMe}$), its O-methyl derivative (Table). Thus in common with other compounds with hydroxy-groups α to ring nitrogen atoms, the equilibrium for the tautomerism of the 2 - and 3 -hydroxyquinoxalines in solution is such that only small amounts of the enol form are present. ${ }^{3}$

Comparison of the spectra of the neutral molecules of 2-amino-, 2-methylamino-, and 2 -dimethylamino-quinoxaline showed the expected bathochromic shifts of absorption bands associated with the substitution of a methyl group for the hydrogen atom of an amino-group (Table, Fig. 4). ${ }^{4}$ The similarity in the spectra and ionisation constants of

Fig. 3. Neutral molecules of 2:3-dihydroxy(\longrightarrow) 2:3-dimethoxy- (....), 1:2-di-hydro-3-methoxy-1-methyl-2-oxo- (-.--) and $1: 2: 3: 4$-tetrahydro-1:4-dimethyl-2:3-dioxo-quinoxaline (---).

Fig. 4. Neutral molecules of 2-amino- (-), 2-methylamino- (----), and 2-dimethylaminoquinoxaline (. . . .).

the 2 -amino- and 2 -dimethylamino-compounds suggested that 2 -aminoquinoxaline existed predominantly in the amino- rather than the imino-form. This was to be expected, as related α-amino- N-heteroaromatic compounds have also been shown to exist mainly in the amino-form. ${ }^{3}$ The evidence was incomplete as the corresponding nuclear N-methyl derivative of 2 -aminoquinoxaline was not available for comparison. The change in spectrum which occurred when these aminoquinoxalines were dissolved in solutions sufficiently acid to convert them into mono-cations, indicated that it was a ring nitrogen, rather than the extranuclear nitrogen atom, that accepted the proton. However, Schofield and Osborn ${ }^{5}$ have shown that 5 -aminoquinoxaline accepts the first proton on the amino-group.

[^1]${ }^{3}$ Albert, Chem. Soc. Special Publ. No. 3, 1955, p. 124.

* Brown and Short, J., 1953, 331.
${ }^{5}$ Osborn and Schofield, J., 1956, 4191.

The differences in the ultraviolet absorption spectra of the neutral molecules of 2 -mer-capto- and 2-methylthio-quinoxaline (Table, Fig. 5) suggested that the mercapto-compound existed mainly in the thioamide rather than the thiol form. There were also differences in the light absorption of the cations derived from these compounds (Table, Fig. 6). 2-Mercaptoquinoxaline proved to be a weaker base than its S-methyl derivative (Table). This again suggested a predominantly thioamide structure for 2 -mercaptoquinoxaline, but more conclusive evidence must await measurements on the N-methyl derivative.

Quinoxalines, because of the 1:4-arrangement of their ring nitrogen atoms, are only weakly basic. ${ }^{6}$ Methyl substitution has a base-strengthening effect, [e.g., parent compound

($\mathrm{p} K_{a} 0.56$), 2-methylquinoxaline ($\left.\mathrm{p} K_{a} 0.95\right)^{7}$]. 2-Hydroxy-3-methylquinoxaline has now been found to be a stronger base than 2-hydroxyquinoxaline; the quinoxalines (I ; $\mathrm{R}=$ $\mathrm{R}_{1}=\mathrm{Me}$) and ($\mathrm{II} ; \mathrm{R}=\mathrm{Me}$) were similarly stronger bases than the corresponding demethyl compounds ($\mathrm{I} ; \mathrm{R}=\mathrm{Me}, \mathrm{R}_{1}=\mathrm{H}$) and (II; $\mathrm{R}=\mathrm{H}$). Methoxyl substitution had a base-weakening effect, thus 2:3-dimethoxyquinoxaline was a weaker base than 2-methoxyquinoxaline, itself a weaker base than the parent compound. As expected 2 -mercaptoquinoxaline was a stronger acid, and 3 -methyl-2-hydroxyquinoxaline a weaker acid than 2 -hydroxyquinoxaline.

The spectrum of quinoxaline in cyclohexane (Table, Fig. 7) shows bands attributable to $n-\pi$ and $\pi-\pi$ transitions. ${ }^{8 a}$ In water ${ }^{9}$ or methanol ${ }^{10}$ the less intense $n-\pi$ band is

[^2]obscured by the long-wave $\pi-\pi$ band, since change from non-polar to polar solvent causes $n-\pi$ bands to shift to shorter wavelengths, whereas $\pi-\pi$ bands are not greatly affected by change of solvent.

Substitution in the quinoxaline nucleus at position 2 produces bathochromic shifts in the $\pi-\pi$ bands. This increases in the order $\mathrm{Me}<\mathrm{Cl}<\mathrm{OMe}<\mathrm{SMe}<\mathrm{NMe}_{2}$ (Table, Fig. 7). These substituents produce similar bathochromic effects on the $260 \mathrm{~m} \mu$ band of the benzene spectrum and the $300 \mathrm{~m} \mu$ band of the pteridine spectrum. ${ }^{8 b}$ By analogy with the spectra of the chloropyrazines ${ }^{11}$ and chloropteridines, ${ }^{8 b}$ a chloro-substituent should exert a hypsochromic effect on the $n-\pi$ band of the quinoxaline spectrum. This effect was not observed in the spectrum of 2-chloroquinoxaline in cyclohexane (Table, Fig. 7) because the $n-\pi$ band was obscured by the more intense $\pi-\pi$ band. A comparison of the spectra of 2-methoxy-, 2-methoxy-3-methyl-, and 2:3-dimethoxy-quinoxaline in water or cyclohexane indicated that the long-wave band of the disubstituted quinoxalines was of increased intensity but at slightly shorter wavelengths.

The anomalous features in the spectrum of the neutral molecule of 6-hydroxypteridine, the pteridine analogue of 2 -hydroxyquinoxaline, are due to the formation of a hydrate, the molecule of water being added across the $7: 8$-carbon-nitrogen double bond. ${ }^{12}$ No similar anomalies were observed in the spectrum of the neutral molecule of 2 -hydroxyquinoxaline. On anionisation a bathochromic shift characteristic of the hydroxyazanaphthalenes was observed (Table). ${ }^{\mathbf{1 2}}$ The spectrum of the anion of 2 -hydroxyquinoxaline resembled that of the neutral molecule of 2 -aminoquinoxaline, as is general for phenoxide ions and the corresponding aromatic amines. ${ }^{13}$

Experimental

Materials.-Quinoxaline and 2-methylquinoxaline were prepared by Jones and McLaughlin's method. ${ }^{14}$ The sources of other quinoxalines were given in earlier papers. ${ }^{15}$

Physical Measurements.--Ultraviolet measurements were made with a Unicam S.P. 500 instrument. Measurements of pH were made with a Cambridge bench-type pH meter, standardised with buffer solutions of pH 4.00 and 9.19 at 25°, prepared from Cambridge buffer tablets. A Doran Alkacid sealed glass electrode and a Cambridge calomel electrode were used. Glycine, acetate, and phosphate buffers (0.01 m) were used; solutions of lower pH were prepared from standard solutions of either hydrochloric or sulphuric ${ }^{16} \mathrm{acid}$. Ionisation constants were determined either potentiometrically or spectroscopically in the usual manner. ${ }^{1}$ The limits quoted in the table define the spread in the calculated $\mathrm{p} K_{a}$ values over the range $30-70 \%$ neutralisation.

The author's grateful thanks are due to Dr. S. F. Mason for valuable advice and to Miss M. Seidenberg for her help with the potentiometry and spectroscopy.

[^3]
[^0]: ${ }^{1}$ Albert and Phillips, $J ., 1956,1294$.
 ${ }^{2}$ Oakes, Pascoe, and Rydon, $J ., 1956,1045$.

[^1]: Footnotes to Table:
 a Potentiometric determinations of $\mathrm{p} K$ were carried out at 25°, and spectroscopic determinations at room temperature, which varied from 15° to 25°. ${ }^{b}$ An entry in this column indicates that the ionisation constant was determined spectroscopically. © Where the solvent was water the entry is followed by the pH of the solution. ${ }^{\text {d Mason (Chem. Soc. Special Publ. No. 3, 1955, p. 139) gave }}$ $\lambda_{\max } 340\left(\log _{10} \varepsilon 2.76\right)$ and $312(3.70)$. These values were taken from the smooth curve drawn through the vibrational fine structure of the $n-\pi$ and first $\pi-\pi$ bands. e Shoulder or inflection. ${ }^{\text {F }}$ Spectrum in $0 \cdot 1 \mathrm{~N}$-hydrochloric acid (Landquist, J., 1953, 2830) showed similar $\lambda_{\text {max }}$ and $\varepsilon_{\text {max }}$ values. of Albert, Brown, and Cheeseman ($J ., 1952,1620$) obtained 9.08 at $20^{\circ} .{ }^{h}$ Albert and Phillips ($J ., 1956,1294$) gave -1.37. ' For spectrum in 96% ethanol, Clark-Lewis ($J ., 1957,422$) gave $\lambda_{\text {max. }} 346$ ($\log \varepsilon 3.72$), 282 (3.72), and 230 (4.31). ${ }^{3}$ Extinction curve by Lanning and Cohen (J. Biol. Chem., 1951, 189, 109) showed $\lambda_{\text {max. }}$ at $\mathrm{ca} .335,285$, and $250 \mathrm{~m} \mu$. ${ }^{k}$ For spectrum in ethanol, Dawson, Newbold, and Spring ($J ., 1949,2579$) gave $\lambda_{\max .} 336 \cdot 5$ ($\log _{10} \varepsilon 3 \cdot 85$), $280 \cdot 5(3 \cdot 75)$, and $229(4 \cdot 33) .{ }^{〔}$ Albert and Phillips (loc. cit.) gave 9.52 for the acidic $\mathrm{p} K_{a}$ at $20^{\circ} .{ }^{m}$ Albert, Goldacre, and Phillips ($J ., 1948,2240$) obtained 3.96 at 20°. ${ }^{n}$ In 10% ethanol. - In 50% ethanol.

[^2]:
 7 Albert, Brown, and Wood, J., 1954, 3832.
 ${ }^{8}$ Mason, (a) Chem. Soc. Special. Publ. No. 3, 1955, p. 139; (b) J., 1955, 2336.
 ${ }^{9}$ Albert, Brown, and Cheeseman, J., 1951, 474.
 10 Bohlmann, Chem. Ber., 1951, 84, 860.

[^3]: Queen Elizabeth College, Campden Hill Road, London, W.8.
 [Received, July 29th, 1957.]
 ${ }^{11}$ Halverson and Hirt, J. Chem. Phys., 1951, 19, 711.
 ${ }_{12} 12$ Brown and Mason, J., 1956, 3443.
 ${ }^{13}$ Jones, J. Amer. Chem. Soc., 1945, 67, 2127.
 14 Jones and McLaughlin, Org. Synth., 1950, 30, 86.
 ${ }^{15}$ Cheeseman, (a) J., 1955, 1804; (b) J., 1957, 3236.
 ${ }^{16}$ Michaelis and Granick, J. Amer. Chem. Soc., 1942, 64, 1861.

